

ati Cavi-Break®

'R' VALUES FOR COMMON EXTERNAL CONSTRUCTION COMPARISON

Wall system performs Worse

Wall system performs Equal

Wall system performs Better

* Values below the tables show the actual difference in the 'R' values N/A is information in Not Available

Refer to notes in blue for clarification of the wall details

STEEL WALL FRAMING ati Cavi-Break used as thermal break and cavity batten

90mm steel studs @ 600 crs with 20mm thick ATI Cavi-Break™Strips, 10mm plasterboard internal wall lining, 9.5mm FC external cladding, breathable vapour barrier and glasswool insulation batts

* Note 90 x 35 studs and 2700 high wall height used for results

R2.0 batts		R2.5 batts		R2.7 batts	
Summer	Winter	Summer	Winter	Summer	Winter
2.0	2.2	2.3	2.5	2.5	2.6

R' values will be the same for 9.5mm fibreboard cladding such as Weathertex

STEEL WALL FRAMING - James Hardie 'Hardiebreak'

90mm steel studs @ 600 crs with Hardibreak thermal break, 10mm plasterboard internal wall lining, 9.5mm FC external cladding, breathable vapour barrier and glasswool insulation

* Note 90 x 35 studs and 2700 high wall height used for results

R2.0 batts		R2.5 batts		R2.7 batts	
Summer	Winter	Summer	Winter	Summer	Winter
1.77	1.85	1.97	2.06	2.05	2.13
-0.23	-0.35	-0.33	-0.44	-0.45	-0.47

STEEL WALL FRAMING -James Hardie - 19mm FC cavity trim

90mm steel studs @ 600 crs with 19mm FC cavity trim on-stud, 10mm plasterboard internal wall lining, 9.5mm FC external cladding, breathable vapour barrier and glasswool insulation batts

* Note 90 x 35 studs and 2700 high wall height used for results

R2.0	R2.0 batts		R2.5 batts		R2.7 batts	
Summer	Winter	Summer	Winter	Summer	Winter	
1.64	1.72	1.8	1.88	1.86	1.93	
-0.36	-0.48	-0.50	-0.62	-0.64	-0.67	

STEEL WALL FRAMING - 70 x 35 Timber batten

90mm steel studs @ 600 crs with 70 x 35 timber batten on-stud, 10mm plasterboard internal wall lining, 9.5mm FC external cladding, breathable vapour barrier and glasswool insulation batts

* Note this has been extrapolated from a system by removing the rigid insulation and should not be taken as final. 2700 wall height.

R2.0 batts		R2.5 batts		R2.7 batts	
Summer	Winter	Summer	Winter	Summer	Winter
1.7	1.8	N/A	N/A	N/A	N/A
-0.3	-0.4				

TIMBER WALL FRAMING - ati Cavi-Break used as a cavity batten

90mm timber studs @ 600 crs with 20mm thick ATI Cavi-Break™Strips, 10mm plasterboard internal wall lining, 9.5mm FC external cladding, breathable vapour barrier and glasswool insulation batts

* Note 90 x 45 studs and 2700 high wall height used for results

R2.0 batts		R2.5 batts		R2.7 batts	
Summer	Winter	Summer	Winter	Summer	Winter
2.2	2.4	2.6	2.8	2.8	3.0

TIMBER WALL FRAMING - James Hardie - Direct fix

90mm timber studs @ 600 crs, 10mm plasterboard internal wall lining, 9.5mm FC external cladding, breathable vapour barrier and glasswool insulation batts

* Note 90 x 45 studs and 2700 high wall height used for results

R2.0 batts		R2.5 batts		R2.7 batts			
	Summer	Winter	Summer	Winter	Summer	Winter	
	1.93	2.04	2.26	2.37	2.39	2.5	
	-0.27	-0.36	-0.34	-0.43	-0.41	-0.5	

TIMBER WALL FRAMING - James Hardie FC cavity trim

90mm timber studs @ 600 crs with 19mm FC cavity trim on-stud, 10mm plasterboard internal wall lining, 9.5mm FC external cladding, breathable vapour barrier and glasswool insulation batts

* Note 90 x 45 studs and 2700 high wall height used for results

R2.0 batts		R2.5 batts		R2.7 batts	
Summer	Winter	Summer	Winter	Summer	Winter
2.26	2.4	2.59	2.73	2.71	2.85
0.06		-0.01	-0.07	-0.09	-0.15

TIMBER WALL FRAMING -James Hardie - 70 X 35 Timber batten

90mm timber studs @ 600 crs with 70 x 35 timber batten on-stud, 10mm plasterboard internal wall lining, 9.5mm FC external cladding, breathable vapour barrier and glasswool insulation batts

* Note 90 x 45 studs and 2700 high wall height used for results

R2.0 batts		R2.5 batts		R2.7 batts	
Summer	Winter	Summer	Winter	Summer	Winter
2.34	2.48	2.69	2.84	2.83	2.97
0.14	0.08	0.09	0.04	0.03	-0.03

'R' value calculations for wall systems using ATI Strips are based on Report/Calculations No W230314 prepared by Acronem Consulting Australia Pty Ltd Calculations are based upon:

* AIRAH Technical handbook, Edition 5 2013, pp 62-73 - Thermal Properties of Building and Insulating Material

* AS/NZS 4859 Parts 1 & 2: 2018, Thermal insulation materials for buildings incorporating the effects of thermal bridging

* Wall outer and inner surfaces are determined as the relevant isothermal planes without intermediate thermal bridging paths

* Test Report(s) from an Accredited Testing Laboratory for Material R-Value and Emittance of IR Reflective Surfaces where applicable.

Elements of construction varying from that described may, as a result, produce a different thermal resistance.